Mixed Discrete and Continuous Algorithms for
Scheduling Airborne Astronomy Observations

Jeremy Frank and Elif KrklU*
{frank,ekurkly @email.arc.nasa.gov

NASA Ames Research Center
Mail Stop N269-3
Moffett Field CA 94035-1000

Abstract. We describe the problem of scheduling astronomy observations for
the Stratospheric Observatory for Infrared Astronomy, an airborne telescope. The
problem requires maximizing the number of requested observations scheduled
subject to a mixture of discrete and continuous constraints relating the feasibil-
ity of an astronomical observation to the position and time at which the obser-
vation begins, telescope elevation limits, Special Use Airspace limitations, and
available fuel. Solving the problem requires making discrete choices (e.g. se-
lection and sequencing of observations) and continuous ones (e.g. takeoff time
and setup actions for observations by repositioning the aircraft). Previously, we
developed an incomplete algorithm called ForwardPlanner using a combination
of Al and OR techniques including progression planning, lookahead heuristics,
stochastic sampling and numerical optimization, to solve a simplified version of
this problem. While initial results were promising, ForwardPlanner fails to scale
when accounting for all relevant constraints. We describe a novel combination of
Squeaky Wheel Optimization (SWO), an incomplete algorithm designed to solve
scheduling problems, with previously devised numerical optimization methods
and stochastic sampling approaches, as well as heuristics based on reformula-
tions of the SFPP to traditional OR scheduling problems. We show that this new
algorithm finds as good or better flight plans as the previous approaches, often
with less computation time.

1 Introduction

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next gener-
ation airborne astronomical observatory. The facility consists of a 747-SP modified to
accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 sci-
ence flights per year over its 20 year lifetime, and will commence operations in 2005.
The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is
articulated through a range 26° to 60° of elevation. The telescope has minimal lateral
flexibility; thus, the aircraft must turn constantly to maintain the telescope’s focus on an
object during observations. A significant problem in future SOFIA operations is that of
scheduling Facility Instrument (FI) flights in support of the SOFIA General Investiga-
tor (GI) program, called the SFPP (Single Flight Planning Problem). Gls are expected

* QSS Group, Inc.

to propose small numbers of observations, and many observations must be grouped to-
gether to make up single flights. Approximately 70 Gl flight per year are expected, with
5-15 observations per flight.

Flight planning for the previous generation airborne observatory, the Kuiper Air-
borne Observatory (KAO), was done by hand; planners had to choose takeoff time,
observations to perform, and decide on setup-actions called “dead-legs” to position the
aircraft prior to observing. This task frequently required between 6-8 hours to plan one
flight . The scope of the flight planning problem for supporting Gl observations with
the anticipated flight rate for SOFIA makes the manual approach for flight planning
daunting. There has been considerable success in automating observation scheduling
for ground-based telescopes [1], space-based telescopes such as Hubble Space Tele-
scope [2], Earth Observing Satellites [3] and planetary rovers [4]. However, the SOFIA
flight planning problem differs from these problems in a variety of ways. Observa-
tions are feasible over large, continuous regions of space and time; observations that
can’t be done at the current position and time may have an infinite number of setup
actions enabling them. The principal feasibility condition for observations is goverened
by a nonlinear function over the solution to the equations of motion, complicating the
task of finding good heuristics. Temporal constraints are implicit in these continuous
constraints; bounding above approximations are hard to calculate and generally weak,
making temporal constraint propagation unlikely. Finally, the expense of checking fea-
sibility conditions impacts the speed of automated planning.

The SFPP is an intractable constrained optimization problem, containing both an
exponential discrete sub-problem (selecting and ordering observations) as well as con-
tinuous choices (takeoff time and setup steps). Previously, we developed an algorithm
to solve a simplified version of the SFPP, called ForwardPlanner [5, 6]. ForwardPlan-
ner is a novel combination of Al and OR techniques, including progression planning,
lookahead heuristics, biased stochastic sampling, approximations and continuous op-
timization methods. Initial results with ForwardPlanner on a simplified version of the
SFPP were promising; however, we show in this paper that ForwardPlanner fails to scale
as more and more constraints (Special Use Airspace (SUASs), runway and airway selec-
tion, high-fidelity fuel consumption on takeoff and landing, in-flight altitude changes,
calculation of initial fuel load) on valid flight plans are added to the problem descrip-
tion. Computationally expensive lookahead search is needed to obtain good results from
ForwardPlanner. Introducing approximations to reduce the costs of lookahead improves
runtime, but ultimately leads to poor quality flight plans. Consequently, we seek a new
approach to solving the problem.

Squeaky Wheel Optimization (SWO) [7] was originally developed for scheduling
problems with an optimization objective. SWO accepts as input a permutation of tasks
to schedule, and a fast procedure call€giomstructorthat treats each task in order, ul-
timately scheduling tasks or rejecting them. The permutation and its resulting schedule
are then analyzed by@ritic to determine a new permutation that might schedule tasks
that were previously rejected. The cycle repeats until all tasks are scheduled or for a
fixed number of iterations. SWO was originally evaluated on Graph Coloring [7], and
has since been employed for satellite observation scheduling [8] and range scheduling
[9], as well as project scheduling with temporal constraints [10]. The promise of SWO
for solving the SFPP is that good plans can be found using fewer expensive feasibility
checks than ForwardPlanner.

The rest of the paper is organized as follows. We first formally describe the SFPP,
the constraints on flight plans, and the optimization criteria used to compare valid flight
plans. We then briefly describe the ForwardPlanner and discuss its problems. We then
introduce Squeaky Wheel Optimization (SWO) and discuss how to apply it to the SFPP
using numerical optimization methods and approximate solutions to OR problems. We
show that SWO improves upon ForwardPlanner on a small set of examples. We then

! Anecdotal evidence provided from conversations with SOFIA staff who worked with KAO.

discuss a variety of ways to improve the performance of SWO. We describe experiments
to validate the approach. Finally, we conclude and discuss future work.

2 Describing SOFIA's Choice

The input to the Single Flight Planning Problem (SFPP) consists of a set of observa-
tion requests, each consisting of the Right Ascension (®Ahd Declination (Decy,
observation duration, priority; a flight date; maximum fuel load; an altitude profile map-
ping flight time to maximum altitude; earliest takeoff tifigand latest landing times

0.; the designated takeoff and landing airports (which need not be the same); predicted
wind and temperature; and a list of SUAs. For a flight plan to be valid, the aircraft must
take off from the takeoff airport, land at the landing airport, avoid all SUAs, and con-
sume less than the available fuel at takeoff. The objective is to find a flight plan that
maximizes the number of requested observations performed. During Higiti-legs
require tracking an object for a period of time, and are only valid if the object stays
within the telescope elevation limits for the requested duration. The observation must
also take place in darkness (the sun must be below the horiRead-legs when no
observations are performed, can be used to reposition the aircraft to enable flight-legs.
A distinguished class of dead-legs are used to take off and return to the landing airport.
Since it is intractable to find the best possible plan, we limit ourselves to searching for
goodplans that perform many observations of high priority. Solving the SFPP requires
choosing a takeoff time, selecting the set of observations to service, ordering them and
inserting necessary dead-legs to ensure that all flight legs are valid.

2.1 Constraints on Valid Flights

In this section we describe the constraints on valid solutions to the SFPP in more detail.
The telescope is carried aboard a Boeing 747-SP aircraft. The fuel consumption of each
engine depends on the aircraft weight, mach number, outside air temperature, initial
altitude and final altitude. The fuel consumption constraints are represented in a lookup
table provided by Boeing. The aircraft follows a pre-determinéiidude profilethat
describes the maximum permitted altitude at an absolute time after takeoff. Climbs are
allowed periodically to decrease fuel consumption. At the end of a leg, if the aircraft is
allowed to climb, it climbs to the maximum altitude permitted by the fuel performance
table or the altitude profile. The profiles used in this paper were developed assuming
standard atmosphere [11]; actual atmospheric conditions and aircraft weight may force
the aircraft to fly lower than the altitude profile permits. Predicted wind and temperature
are used to calculate the ground track and fuel consumption. Finally, SUAs constrain
the ground track of the aircraft by forcing dead-legs to reposition the aircraft. Space
precludes describing the fuel consumption constraint in more detail.

The constraints linking aircraft motion
and observation feasibility are the most
complex and important component of the
problem, so we describe them further here.
SOFIA can view objects betwee°® and
60° of elevation (from the plane of flight).

If an observation is scheduled, then it must
be performed for the requested duration
without interruption, and the object must
stay within the elevation limits throughout
the observation. The elevation of an ob-
ject depends on the object’s coordinates,
Fig. 1. The Cartesian formulation of thethe aircraft’s position and the time.
instantaneous equations of motion of the

aircraft and the elevation.

Checking this constraint requires computing the aircraft’s ground track throughout
the course of the observation. Figure 1 shows the interaction between the object’s coor-
dinates, the aircraft's position, the time, and the telescope elevation. The Earth is mod-

eled as an oblate spherdi whose surface is defined by the equal%lénk Z—z + i—z =1
wherec < a. Let p be the aircraft's current position, (latitudeand longitudel.) and

0 be the (Sidereal) time that the aircraft ispatLet S be the vector from the center of
E to p. Let T be the vector to an astronomical objecat timef, andP as the plane
tangent taE atp. Leti, j, k be the unit vectors in the, y, ~ directions respectively. Let
N be the vector normal tB: N = Z—gf—i— %j + ’:—gﬁ (Note thatS and N are generally
not parallel sinceE is a spheroid.) LefT’» be the projection offl’ onto P; this is the
object azimuthatp, and is given byfi'p = T — %N. Let V be the desired heading
of the aircraft. The observatory must track the object indudhgubject to the con-
straint that the angle betwedn andT’p is 270°, because the telescope points out the
left-hand side of the aircraft. L& n(270°) be a rotation matrix that rotates a vector
270° aroundV, andv be the airspeed of the aircraft; theh= vR (270°) 72y, Let

H be the elevation vector with respecto We also require the angle betweenH
andT'p obey the constrairt0° < h < 60° throughout an observation. Most targets are
sufficiently far from Earth that we can assuthe= T + S. From vector calculus we

then get the equation for the elevatidn= cos™! (%) The angler between

V4 and the object azimuth at the new positiBa is given by:r = cos™! (HVXLT%)
Now, T' is a function ofo andé; this is because the Earth rotates on its axis. The vector
T traces a circle of radius? + y? = Cigd, whered = |930 | in 24 hours (see [12] for

an explanation of this).

The instantaneous changepnas the aircraft tracks is ‘fi—g = V. SinceV is a
function of T', it is a function ofo, p andé. Solving for the ground track is necessary
to computeh over the entire duration of the observation and check the elevation con-
straints. It is worth noting that this formulation also makes it easy to add the effect of
winds by adding the appropriate vectorsWg and also correct for aircraft pitch by
rotating aboud” x IN, but we omit these for brevity.

3 ForwardPlanner and its Discontents

The first fully automated approach to solving the SFPP was ForwardPlanner [5, 6].
We originally assumed no SUAs and ignored runway and airway selection, ascent and
descent, thus simplifying the fuel consumption constraint. ForwardPlanner combines
progression based search, continuous numerical optimization, dispatch heuristics and
stochastic sampling, resulting in an incomplete randomized algorithm. The ground track
and elevation constraints are solved using a specializedrder Runge-Kutta [13]

with error-adaptive step sizing. ForwardPlanner evaluates the feasible observations at
each phase of a flight, and selects one observation to add to the flight. When checking
feasibility, rather than considering all possible setup actions, ForwardPlanner only con-
siders theshortest dead-lemaking an observation visible for long enough and allowing
the aircraft to subsequently fly to the landing airport. If the shortest dead-leg crosses an
SUA, the heading is shifted minimally left or right from the heading of the shortest dead
leg until the dead leg misses all SUAs. The duration of the leg is then adjusted to ensure
the object is visible for the required duration. If the resulting dead leg is longer than
D (an operational limitation on the longest permissible dead-leg), then the observation
is rejected. If the flight-leg following this dead-leg crosses any SUA, the observation
is rejected. If the observation begins before sunset or ends after santise local
position the observation is rejected. (Remember, changing your position changes the
time at which the sun rises or sets.) Finally, if the aircraft cannot return to the landing
airport after the observation is performed, the observation is rejected. If the observation
survives all of these checks, ForwardPlanner considers it is feasible.

Each feasible observation is then evaluated by first adding it to the flight plan, then
heuristically adding a fixed number of additional observations. This "lookahead” is per-
formed to estimate the best flight plan possible after adding each observation. These
short extensions are evaluated using a weighted sum qfribity of the observations
performed so far, thefficiency(ratio of time spent observing to total flight time) of the
(incomplete) flight, the estimated time to return to the designated landing airport, and
the total time spent in turns. The heuristic rank of each observation is treated as the mass
of a probability distribution used to select the next observation. Thus, if we have a set
of choicesC' and heuristic values of of these choiegs), we choose an elemeat C

with probability %. This technique is similar to Heuristic Biased Stochastic
deC

Sampling (HBSS), zei/technique used for scheduling ground based telescopes [1]. This
means that the "best” candidate need not be selected at any stage of the process, but
has the highest probability of being selected. The process of evaluating the feasible
observations and adding the next observation to a flight is shown pictorally in Figure

2. ForwardPlanner is a stochastic algorithm, and can be run several times to generate
better flights; the ForwardPlanner algorithm sketch is shown in Figure 3.

ForwardPlanner()
F is (initially empty) current flight plan

1. Current Plan —— fOr MaXRepeatS
5. Value Observation SeleCt takeoﬁ t|me
based on extension Wh|le not done
@ @ @ # F is set of feasible observations
e for each unscheduled observation
2. Feasible Observations if FeaSIble&v D, 0)
29 Add p to F'; updatep, 0
) v=Evaluateg, F')
o7 P(Orion)| P(Elvis) Add (07 U) to B
0.7/0.9 :.0.2/0.9' Removeo from F
3. Lookahead 4. Stochastic Choice endfor

if E is not empty
Use values to selecte from £
Fig. 2. ForwardPlanner's Evaluate() routine. ExtendF by e; empty
Each feasible observation in the current plan else done
1) is added to the plan 2). A fixed number of endfor
observations are used to extend the plan 3). return F
Each of these observations is evaluated in- end
dividually, and the values are used to form
a probability distribution; this distribution is
sampled 4) to determine how to extend the Fig. 3. A sketch of the ForwardPlanner Algo-
flight. Once the maximum number of obser- rithm. At each step, all feasible observations
vations in lookahead (2 in this example) is are considered as the next observation in the
reached, the resulting flight is used to deter- plan. For each feasible observation, the Eval-
mine how good it is to add the first observa- uate() routine builds an extension of the plan
tion to the current flight 5). to evaluate how good a flight will result. Fea-
sible() is described in Figure 7.

The principal cost of ForwardPlanner is in the lookahead phase, where many legs
are constructed to test observation feasibility solely to evaluate an observation, and then
are thrown away. LelV be the number of observation requests Hebe the lookahead
depth, and letM be the maximum number of observations that can be in any flight
plan. Each oMaxRepeattoops in ForwardPlanner makéy N2K M) calls to Feasi-
ble(); a proof of this appears in [5]. It was found empirically that= 4 struck a good
balance between computational cost and flight plan quality [5]. ForwardPlanner was
improved upon in [6] by observing that many expensive dead-leg construction steps
could be eliminated. Suppose an observation is not visible at the current position and
time. If we drop the condition on reaching the landing airport, an approximation of
the shortest dead ldgd (b is the heading and is the duration) has the property that

Fi(b,d) =< fi(b,d), fo(b,d) >=< 0,0 > where f; is the difference between the
object azimuth and the final heading of the aircraft after flying the dead-leg defined by
b, d, and f, is the difference between the object elevation after flying the dead-leg and
the telescope elevation limit closest to the initial object elevation. A similar formulation
exists for the shortest dead leg ensuring an observation is visible throughout a flight leg
[6]. We solve forb, d using a Secant Methdgdthe final version of Feasible() used in
FowrardPlanner appears in Figure 7. The resulting algorithm is a novel combination of
Al progression planning and stochastic sampling and OR numerical optimization tech-
niques for solving a complex constrained optimization problem. This approach reduces
the runtime of ForwardPlanner without impacting the value of the flight plans found.

Initial results on solving the simplified version of SFPP with ForwardPlanner were
promising [6]. However, adding requirements to avoid SUAs, calculate initial fuel loads
in the face of predicted weather, runway and airway selection, and calculating fuel
consumption based on altitude changes (especially complex for takeoff and landing).
made ForwardPlanner too slow. In particular, SUA evasion and fuel consumption dur-
ing climb vastly increase the expense of the feasibility check. This is problematic, given
that large lookahead and many samples are needed to find good quality plans. Further re-
ductions in runtime can be accomplished by approximately calculating aircraft position
after flight legs in the lookahead phase using Euler’s Method instead of Runge-Kutta.
Euler's Method approximates the solution to the ground track by flying a constant head-
ing for a fixed (small) duration relative to the total observation time. The approximation
we used does not adequately account for the ellipsoid Earth, wind speed and direction,
change of altitude, and estimates fuel consumption based on the last calculated fuel con-
sumption rate. Our intuition was that these approximations would permit a good, fast
estimate of the value of inserting an observation. Unfortunately, the heuristic quality de-
grades too much and leads to poor quality plans. Figures 4 and 5 compare performance
on 6 sample problems (we will discuss the SWO results later in the paper). In these ex-
periments, ForwardPlanner was run with MaxRepea®$). ForwardPlanner finds good
quality plans, but takes 8-20 minutes per flight generated. Employing Euler's Method
reduces ForwardPlanner’'s computation time considerably, but leads to plans with fewer
scheduled observations in 4 of 6 cases. While some of the cost savings is in lookups to
outside air temperature and the fuel table, as well as the switch in integration methods,
the vast increase in software complexity required to correct these problems led us to
search for new solutions to the problem that allow us to generate good quality flights
fast.

Algorithm Comparison (Quality) Algorithm Comparison (Time)

3
1.2 § 1400

1 § 1200

£ 1000

08 < 800 ‘
0.6 2 600
0.4 £ 400
0.2 3 200 ﬁ

0 £ o

N 5

Problem Instance Problem Instance

Completed Observations

D Baseline SWO mForwardPlanner/Euler O ForwardPIanner‘ O Baseline SWO M ForwardPlanner/Euler O ForwardPlanner

Fig. 4. Comparison of solution quality for Fig.5. Comparison of average CPU time for
ForwardPlanner (with and without Euler's ForwardPlanner (with and without Euler's
method approximation of flight dynamics) method approximation of flight dynamics)
and SWO. and SWO.

2 The previous work incorrectly identified the method used as Newton’s Method; since numeri-
cal derivatives are used, we actually use a Secant Method, which is the term we will use in this
paper.

4 Squeaky Wheel Optimization for the SFPP

SWO takes as input a permutation of tasks to schedule, and a fast procedure called a
Constructorthat treats each task in order, ultimately scheduling tasks or rejecting them.
The permutation and its resulting schedule are then analyzeditia to construct

a new permutation that might schedule tasks that were previously rejected. The cycle
repeats until all tasks are scheduled or for a fixed number of iterations. Figures 6 and 7
describe damily of SWO algorithms specialized for solving the SFPP. We discuss the
features of this specialized SWO in more detail below.

The constructor assumes that the flight begins at the takeoff time, and that the per-
mutation P imposes a precedence ordering on the observations, and attempts to con-
struct a schedule. If an observation is not trivially visible for the requested duration, the
shortest dead-leg is constructed by solving the zero finding problem. If this leg is short
enough, SUAs can be avoided, and sufficient fuel remains the observation is added, oth-
erwise it is rejected. This is identical to the procedure used in ForwardPlanner, and is
shown in Figure 7. Rejecting thi& observation inP? does not imply rejection of > i;
all observations are processed. The best fliglig the flight maximizings + £, where
s is the percentage of requested observations scheduled, iarttie efficiency of the
flight (the ratio of time spent observing to flight time)The final flight plan is checked
for SUA violations on the return leg; if there are any, the flight is rejected.

Feasibldo, p,)
o is the observation

SWO(MaxFlights,MaxRepeats) #p is the current position
I is current flight plan # D is maximum dead leg duration
B is best flight plan _ (b,d, z) = FindDeadLegt, p, 6)
P is a permutation of observations #b = heading = duration,z = SUA zone
R is rejected observations if the dead-leg crosses any SUA zane
for MaxRepeats) #Revise dead legs to avoid SUA
1. Generate permutatio? b’ is closest heading s.t. allnot crossed
for MaxFlights _ d’ is new duration
2. Select the takeoff timg d=d:b=1V
Construct flight fromP if d > D return false
#pis the current position of’ if observation starts and ends in darkness
for observatioro € P if dead leg home possible followirg
if Feasible, p, 6) return true
Addpto F’ return false
Updatep, 6
elseaddp to R FindDeadLeg(o, p, 6)
end for _ #e is the elevation limib violates afp, 0
Update best flight plar Guess dead-lely d; calculater, h after dead-leg
gli: 0 returnF° #f1(b,d) =7, f2(b,d) =e—h
3. wodiy P by anaiyzingrandre " 08T 00 N
end for J_<5?]})2>(b’d) aafdz(b’d)):<rs>
end for o6 A7 4
if dead leg home does not violate SUA |J| = ps —ar

if |J| < tthen|J| =t (preserve sign ofJ|)
db = % anddd = Pfl‘;""f2
b=b+dbd=d+dd

Updater,h

return B

Fig. 6. A sketch of the family of SWO-based

Flight Planning Algorithm. Later sections

elaborate on options fdr. Generate permutd=ig. 7. The feasibility test with the Secant

tions, 2. Select the takeoff time, and 3. Modiflgthod for finding dead legst, db, dd are

P by analyzingF" and R. tuning parameters. Derivatives are all calcu-
lated numericallyr and h are calculated as
discussed in Section 2.1.

8 Efficiency is a secondary criteria for good quality flights.

In order to modify the permutatioR, a critic must both select a rejected observation
rin R and decide where iff to mover. We use the flight plai’ built with permutation
P to decide how to modifyP. Each observation in a flight plan defines a "slot” in which
a new observation could be placed. Unlike SWO approaches taken in [9] and [8], we
do not perform "blind” migration of jobs in the permutation that might not lead to a
new flight plan. Rather, we identify where in the permutation we can move rejected
observations to ensure that the resulting schedule is modified. Since we guarantee that
a rejected observation will be scheduled during the next construction phase, we run the
risk that some observations later in the flight might be displaced. Thus, it is important
to estimate how much we "regret” moving an observation to a particular place. Critics
must both be fast and produce good quality flights by moving rejected observations
without displacing many scheduled observations.

To ensure rejected observations are scheduled, SWO checks the feasibility of every
rejected observation at every slot in the flight. At worst, this might reqQifa/?)
feasibility checks to determine which slots rejected observations can occupy. While
each ofMaxRepeatgalls in ForwardPlanner makeé3(N? K M) flight leg feasibility
checks, each such call in SWO makeéM ax Flights(N + N?)) feasibility checks.

As long asMaxFlights< K M, SWO costs less per invocation than ForwardPlanner;
this seems likely since, to ensure good performance of ForwardPlaviagElights

M and K likely scale withN. This makes SWO a good candidate for improving upon
ForwardPlanner.

In SWO, there is a complex interplay between the permutation modification and
takeoff time selection. It is possible to construct very bad flight plans by poor selection
of the takeoff time. Also, the combination of the takeoff time, permutation and the
fast scheduler implicitly schedules a subset of the observations. Finally, the fact that
permutations are constantly modified allows reconsideration of the takeoff time based
on the new permutation. For these reasons, this version of SWO ensures that new takeoff
times can be chosen after each modification of the permutation.

4.1 Useful Concepts

In preparation for building our SWO, we introduce some useful concepts.

Time windows during which an objeet at Right Ascensiorx and declinationy
is visible at a fixed position can be constructed as follows. If the aircraft is at position
p =7, L, the earliest and latest timés, (o), 6, ,,(0) at which the observation is visible

by SOFIA atp are given byd,. ,(0) = cos™" (Si“(iggsxfgﬁi“ 7)) + L+ a[12]. The
sin(20) term arises from the fact that SOFIA's lower elevation limi2@ . Note that
cos™!(z) has 2 solutions, which provide the earliest rise tihg(o) and latest set time
0s,,(0) of the object at this position. The time of sunset and sunrise at this position can
be used to further tighten this window. There can be at most 2 feasible windows since
all objects period is 24 (sidereal) hours and the aircraft stays aloft less than 10 hours.
For example, an object can rise above the maximum elevation limit, then drop back into
view. In our critics, by default we use thigst feasible window. We will also use the
time at which an object reaches its maximum elevation (above the local horizon), called
thetransit time This is simplyw.

The SFPP can be relaxed by approximating time windows for observations as de-
scribed in the previous paragraph, effectively pretending that the observatory is fixed
at some location. This leaves a problem in which observations have release times (ear-
liest rise times), due dates (latest set times), occupy a unary resource (the telescope).
This approximation is not bounding, because objects may rise earlier and set later at
different positions than the one used to calculate the time windows. Since SOFIA has a
maximum and maximum telescope elevation limit, the true feasibility windows of ob-
jects may not be convex. Additionally, objects could set then rise during the night, but
usually objects are observed at times of year when they are visible all night (and thus
achieve their maximum elevation sometime during the night). The resulting problem is

1|75 pi; di] > w;U; according to Graham's hierarchy, a well-studied problem in Al and
OR which Karp provedVP-complete [14]. Note thap; are generally not equal and
that tasks are not interruptible. The relaxation is too crude to use directly; we will use
approximate solutions of this problem in our takeoff-time selection method.

4.2 Generating Initial Permutations

We considered the following ways of generating the initial permutation:

Random selectiobniform : If there arelV observations, one of th¥! permutations
is chosen uniformly at random.

Sort by Earliest Start TimRise at the takeoff airport: We calculats , (o) as de-
scribed in the previous section. The intuition behind this ordering is that flights often
occupy the whole night, so beginning observations as early as possible is a good initial
guess. Furthermore, this allows the largest time window to observe any object.

Sort by Latest Start Tim8etat the takeoff airport: We calculag ,, (o) as described
in the previous section. Observing an object as late as possible may be a cheap method
of ensuring enough time remains to schedule necessary dead-legs.

Sort by Transit TiméTransit at the (landing) airport: The intuition here is that this
allows observing very nearby the airport; while one object is being observed, the next
object moves closer to the landing airport, allowing the aircraft to "loiter” nearby.

4.3 Generating Takeoff Time

As we previously observed, due to the complex nature of the visibility constraints,
choosing a good takeoff time is important to constructing good flight plans. We con-
sidered several takeoff time methods:

Estimated flight duratioflightDur : If we simply assume that the aircraft will stay
aloft as long as possible, we can estimate the flight durgtifsom the initial fuel load
and flight profile. The takeoff time range[#, 6, — f]. Since this quantity is indepen-
dent of the permutation, it needs be calculated only once. However, this approach will
usually overestimate the actual flight duration. Furthermore, especially in the summer-
time for long flights,f will exceed the duration of the night and reduce the takeoff time
range to one time (roughly half an hour before sunset).

Minimum of Earliest Start Timeblin Rise: We can calculate the minimum over all
o of 6, ,(o) at the takeoff airport, and "pad” this by the amount of time needed to climb
to operational altitude. Since this quantity is independent of the permutation, it needs
be calculated only once. Only one takeoff time is generated by this approach.

Optimize First-Observation in Permutation: It is clear thdt. (o) is a bounding
above approximation to the earliest time when an observation can be performed; to see
why, observe that flying towards the observation makes it possible to observe it earlier.
If we assume that the first observation in a permutation is meant to be observed, we can
calculate the earliest time at which this observation can be performed and takeoff at that
time. Binary search over takeoff times is performed to find the takeoff time leading to
the earliest feasible observation time for the first observation. Only one feasible take-
off time is generated by this approach. As the first observation in the permutation can
change, the takeoff time will need to be recalculated each time the permutation changes.

Approximate solution to the relaxed scheduling probleeas-SchedWe use the
6,.,(0) andd, , (o) calculated at the takeoff airport to approximate the time windows for
the observations and induce the relaxed scheduling problemy;; d;| > w;U;. Solv-
ing this problem optimally is pointless, since it is a crude approximation of the original
problem. A feasible solution to the relaxed scheduling problem can be generated using
the permutation as an ordering heuristic, and either greedily scheduling from the begin-
ning or the end of the permutation. It is trivial to see that different feasible schedules,
and different takeoff time ranges, can be generated by scheduling forwards or back-
wards; this leads to two methodsgas-Sched (FwdandFeas-Sched (Bkwd)Once

a feasible solution is generated, we calculate the slack of the first feasible observation,
again "padding” for the time to climb to altitude.
If a range of takeoff times is generated, we select from them uniformly at random.

4.4 Modifying the Permutation with Critics

In what follows, assume the problem instance containgbservation requests. All of
our critics use the biased sampling approach described earlier to make selections. Recall
that if we have a set of choic&$ and values of of these choice&) € C, we choose

an element € C with probability%-
deC

We explored the following five critics to modify the permutation:

1-Phase We first determine for each rejected observatiavhether it is feasible in
each slots. This test uses the feasibility test in Figure 7 assuming the aircraft begins at
the position and time at the beginning of séofor each feasible pajp, s) we examine
the time at which the new observatiorends. Since the new observation is guaranteed
to be feasible, successive observations will be delayed, both due to the duration of the
new observation and its dead leg (if any). We then evaluate the rate of change of the
elevation of each successive observation to find out if it would still be visible at the same
position at the later time. This is obviously an approximation, since the aircraft position
would change after the newly inserted observation. Furthermore, we don’t consider
the possibility that unscheduled observations in the permutation could be added, so it
is a conservative regret estimate. L ; be the set of observations we estimate are
made infeasible by performingin slot s. We then calculate(o, s) for the sampling
probabilities as follows. Ifs is the first or last slot or one for whick, ; = 0, then

1
v(0,s) = N. Otherwisep(o, s) = (chexm u(a:)) , whereu(z) = 0.5 if x had a
dead-leg before it, and(x) = 1 if not. This penalizes choices that incur more regret,
with the assumption that replaced observations with dead-legs are regretted less.

Obs-Slot We first determine for each rejected observatiamhether it is feasible
in each slots. We then randomly choose a feasible observatifnom those that could
go into some slos. We calculate sampling probabilities as follows: if an observation
is visible ins slots, the heuristic is(0) = N + 1 — s. (Observations visible nowhere
are not chosen.) We then calculat®, s) as described above for thosén which o is
feasible, and randomly choose the slotdor

Slot-Obs We first determine for each rejected observatomhether it is feasible
in each slot. We then randomly choose a slot in which at least one rejected observation
is feasible. We calculate sampling probabilities as follows:dbservations are visible
in a slot, and the problem instance contaiMisobservations the heuristic igs) =
N + 1 — v. We then calculate(o, s) as described above for thosdeasible ins, and
choose randomly the observation to move to

Time,: For this critic, we usé; ,(o) and#,. ,(o) at the takeoff airport, which can
be calculated once and needs never be repeated. The critic first chooses a feasible ob-
servationo. We calculate sampling probabilities as follow$o) = WM We
then determine which slotsare feasible fob, and calculate (o, s) as described above.
Finally, we randomly choose the observation to move tsingv(o, s).

Timey: Calculatingd, , (0), 6, ,(0) at the takeoff airport is clearly inaccurate. We
can instead calculatg , (o) andé, ,(o) at each slot in the current flight, but at a higher
computational cost. We calculate sampling probabilities as followE: i the set of
positions at the beginning of the slots in the flighty) = min,cp m We
then choose according tov(o). We then determine which slotsare feasible fow,
and calculate(o, s) as described above. Finally, we randomly choose the observation
to move tos usingu(o,).

As a final wrinkle, we can modify the permutation by movihgejected objects
rather than just one. The idea here is that multiple rejected observations could be re-

orderedindependentland potentially improve the flight plan using fewer construction
steps. This idea was successfully employed by [8] and [9] to speed up SWO.

5 Identifying the Right SWO Features

Our approach to finding the best SWO features is to begin with a baseline algorithm:
Flight-Duration based takeoff time range selectidgniform random initial permu-
tation, and theTime, critic. We will use the Wilcoxon Signed Ranked Test [15] to
determine whether using one feature is superior (finds better quality flights) to the base-
line SWO; we will select a small subset of promising algorithms to generate the next
algorithm. In the presentation of the Wilcoxon test resuttsndicates the tests leading

to different values, positive indicates an algorithm variant is likely to perform better
than the baseline, while a negativéndicates an algorithm variant is likely to perform
worse than baseline. Criticality measurements are typically given in ranges; criticalities
of > 0.05 are not considered statistically significant.

6 Empirical Results

In this section we present empirical results for varying facets of SWO in order to find
the best overall algorithm for solving the SFPP.

6.1 Sample Problems

Index | 1 |2 |3[4[5]|6|7|8]9[10] 11 [12|13]| 14| 15|16
Arpot | HI{ HIH{H{ MMM M[M|M|M | M|M|M|M|M
Date |8/6]8/8(8/108/12 1/9|1/101/16(6/166/186/19 6/30| 7/6|8/12/8/16 4/4 | 4/5
#Obs | 9 | 9 |10|10| 7| 8| 8|6 |10/ 8| 8 | 6 [11]10| 9| 9
Index |17 |18|19]20|21|22|23|24[25[26| 27 |[28|29|30| 31|32
ArpotM(M [M| M| M| M| M| M| M{M{M|M | M|{M|M|M|M
Date |4/6|4/114/12/4/144/19 5/4|5/8|7/1|7/6| 8/2| 8/22|8/248/26(8/29 9/1{9/19
#Obs 10| 8 | 8 | 8 |10|10| 6 | 7| 4| 6| 9 | 8 [11]10| 8 | 7
Index [33[34|35[36(37[38(39|40|41|42| 43 | 44| 45| 46| 47
Airpot [M| M| MMM |M|M[MHMHMH| N | N|N|N|N
Date [9/209/2119/23/9/26/9/289/2910/4{6/217/12 8/4 |11/254/225/11|5/155/19
Obs 713|100/ 88|84 |8|7|7|10]8|8|8]|8

Fig. 8. Characteristics of Single Day Instances.

We used as a benchmark flights previously flown on KAO, described in [5], to de-
termine the utility of our new techniques. In Figure 8 we tabulate the number of obser-
vations, he archived flight duration, and the airport. Flights from Moffett Field, CA are
denoted with an M; flights originating in Moffett and ending in Hawaii are denoted MH;
flights from Hawaii are denoted H, and flights from New Zealand are denoted N. Take-
off time is between sunset and sunrise (calculated for each day and year of flight). Wind
and temperature data from European Center for Medium Range Weather Foretasting
are used to calculate ground tracks and fuel consumption. The initial fuel load is also
calculated for each flight, and is based on the altitude profile 4 from [11]. This pro-
file conforms to realistic expectations that good observing will require an altitude of at
least 39000 ft. Finally, SUAs impact flights from Moffett and Hawaii; we use data from
the National Geospatial Intelligence Agency’s Digital Aeronautical Flight Information
File.

4 www.ecmwf.int

The priorities of all observations are identical, and all observations could be sched-
uled for the KAO flights. While SOFIA's performance characteristics differ from KAO
and its elevation limits are different, we found ForwardPlanner was able to schedule
all observations for most of the tests we constructed [6]. Thus, the principal goal is to
find an efficient flight with all of the observations scheduled. The maximum dead-leg
durationD was set to 4 hours. For the dead-leg search using Secant Method we used a
step cutoff of 150 and error tolerante- 10~°. The step parameters used in the Secant
Method wereis; = 0.01° andss = 60 seconds. When CPU times are reported, these
experiments were run on a Sun Workstation with dual 600 MHz CPUs and 2048 Mb
memory. Unless otherwise statédaxFlights= 20 andMaxRepeats 10.

6.2 Choosing Takeoff Times

The results of varying the takeoff time selection while holding all other aspects of the
baseline SWO algorithm the same are shown in Figure 9. In this figure we present the
Wilcoxon Ranked Sign test output for the best percentage of the observations found by
SWO. Recall that we compare each new SWO variant to the baseline SWO described in
the previous section according to the quality of the flights. In what follows, our "best”
SWO variants are those "most likely to exceed the quality of the baseline SWO”.

| TakeoffRange [X]| Z [Crit. | Backwards scheduling to produce

Min Rise 17]-2.218[0.01,0.025]a relaxed feasible scheduleFeas-
First Observation [18-2.057[0.01,0.025] Sched(Bkwd) did best. The least "in-
Feas-Sched (Fwd)12/1.313] >0.05 |formed” approachMin Rise, performs
Feas-Sched (Bkwd)L6| 1.822/[0.025,0.05] Worst. Optimizing the takeoff time range
of the first observation also did not per-
Fig. 9. Wilcoxon Ranked Sign Test resultdorm well. Both of these approaches per-
comparing SWO Takeoff Time variants tdorm worse than the baseline SWO, which
SWO Baseline. usesFlight-Duration .

Curiously, Feas-Sched(Fwdylid not perform as well aBeas-Sched(Bkwd)It is
possible that scheduling backwards produces a larger takeoff time range, thereby in-
creasing flexibility, but more work is needed to understand this result.

6.3 Generating Initial Permutations

For this series of tests, we tested theas-Sched (Bkwd)variant of takeoff time se-
lection with the different initial permutation methods. The results of varying the per-
mutation selection while using the baseline critic are shown in Figure 10. Notice that
Uniform is our baseline permutation method, and thus the first line of Figure 10 repeats
the last line from table 9.

PermutationX | Z Crit. Previous work indicates that "in-
Uniform |16|1.822[0.025,0.05] formed” initial permutations improve the
Rise |14/2.055[0.01,0.025| performance of SWO when compared to
Set 14/1.428 > 0.05 random permutations. We find this to be
Transit |14/1.490 > 0.05 the case as wellRise coupled with the
Feas-Sched (Bkwd)performs best when
Fig. 10. Wilcoxon Ranked Sign Test re-compared to the baseline SWO. Surpris-

sults comparing SWO Initial Permutatioringly, Uniform performs second best, but
ordering variants to SWO Baseline. is not as good aRise

6.4 Modifying Permutations

For this series of tests, we tested theas-Sched (Bkwd)takeoff time generation
method andRise initial permutation generation method with each critic method. In

each case, only one rejected observation was moved per critic application. The results
of varying the critics are shown in Figure 11. Notice thi@ane; is our baseline critic
method, and thus the first line of Figure 11 repeats the second line from table 10.

As expected;]1-Phaseis quite good. Also as expected, we see fhiate, is not
as good agime;. Somewhat surprisingly, thougfijme, and Time; are superior to
Obs-FeasandSlot-Feas even though the former do not correctly identify the feasible
observation-slot combinations, while the latter do not. This suggests that even crude
estimates of time are important when building the critics, and demonstrates that simply
using slot counts is not good enough.

Our final critic experiments udeeas-Sched (Bkwd}akeoff time generatiorRise
based initial permutation selection, abhdPhasecritic. In this experiment we vary the
number of rejected observations that are moved. The regret values are still used to sam-
ple, and are renormalized between samples. The number of observations is moderately
low, so we limited ourselves to experiments moviig or all rejected observations. As
we see, we don't always benefit from increasing the number of rejected observations
that are moved; movingor 3 rejects is worse than moving 1, but moving all rejects is
clearly better than moving 1.

[Critc [X] Z [Crit. | [RejectsN[Z | Crit. |
Time; |16/2.210[0.01 0.025 1 |14{2.338[0.005, 0.01]
Time; |14/2.055[0.01,0.025] 2 |132.148[0.01, 0.025]
Obs-Fea$14/1.710[0.025 0.05 3 |132.253[0.01, 0.025]
Slot-Feas16/1.641 >0.05 all |152.541 = 0.005
1-Phase|14/2.338[0.005 0.01

Fig. 12. Wilcoxon Ranked Sign Test re-

Fig. 11. Wilcoxon Ranked Sign Test re-sults comparing critics moving variable

sults comparing SWO Critic variants tonumbers of rejected observations to SWO
SWO Baseline. Baseline.

6.5 The Best Algorithms

First, we revisit Figures 4 and 5. The baseline SWO generates plans of as good or better
quality as ForwardPlanner. It runs at a fraction of the time of ForwardPlanner without
the Euler's Method approximation speedup, and often is faster than ForwardPlanner
with Euler's Method. The results show that, for these 6 problems, the baseline SWO is
capable of producing quality plans.

We next compare the CPU performance of the SWO algorithms. In order to make
sense of this analysis, it is important to note that SWO terminates if all observations are
scheduled. We compare algorithm performance in Figure 13 using the mean and stan-
dard deviation in CPU times for all 20 runs of the different algorithms; CPU times are
given in seconds. We also reproduce the Wilcoxon signed rank test results comparing
the quality of the flights of each SWO version to the SWO baseline. Overall, adding fea-
tures that further improve the quality of flights leads to roughly a factor of two increase
in CPU time. The takeoff time selection method imposes a significant computational
burden on SWO, as can be seen by the increase in the mean CPU time. While the critics
also impose a computational burden on SWO, we actually sedugtionin CPU time
compared to those methods without the intelligent critics; this is likely due to the early
termination of SWO when all observations are scheduled.

Analyzing the CPU time on a case by case basis, we find that our worst-case perfor-
mance hit is roughly a factor of 10 increase in CPU time between the baseline SWO and
the best SWO, which is moderately high. Howerver, the vast majority of the time the
CPU time hit is under a factor of 2. The resulting SWO algorithms deliver significantly
better quality flights than ForwardPlanner with Euler’s Approximation, at roughly com-
parable run times.

[Name [Baseline] T/0 [Perm. [Critic [Swaps]

Takeoff Rangé-lightDur |[Feas-Sched (Fwd) = = =
Permutation| Uniform = Rise = =
Critic Rise = = 1-Phase =
Swaps 1 1 1 1 all
Mean 63.728 113.071 187.612 | 166.486 [145.501
Sdev 29.976 77.623 144.755 | 108.985 | 86.427
X - 16 14 14 15
4 - 1.823 2.055 2.338 2.541
Crit - [0.025,0.05] |[0.01,0.025][0.005,0.01]~ 0.005

Fig. 13. Comparison of mean and variance of SWO CPU times for all "incremental best” SWO
variants identifying best SWO features.

7 Conclusions and Future Work

We described the SFPP, a difficult mixed discrete and continuous constrained optimiza-
tion problem. ForwardPlanner, an initially promising approach mixing techniques from
Al and OR, ultimately fails to scale for the SFPP. We have described the application
of SWO to the SFPP problem. As with our previous approach, ForwardPlanner, the
resulting algorithm combines Al and OR techniques to solve a difficult constrained op-
timization scheduling problem. Our results indicate that SWO is a powerful technique
that delivers higher quality flight plans in less time than ForwardPlanner, our previ-
ous approach to the SFPP. The quality of flights found by SWO can be increased even
further, at a reasonably increase in CPU time.

SWO utilizes numerous techniques in a novel combination to solve the SFPP. The
combination of relaxations and continuous optimization method used in ForwardPlan-
ner to reduce the infinite space of setup actions lead to an efficient constructor for our
SWO algorithm. We also show that relaxations of the SFPP lead to traditional OR prob-
lems, and employ heuristic solutions to these problems in our SWO approach to good
effect. In particular, the takeoff time selection method based on greedy solutions to
1lrs; pi; di| > w;Ur proved to be an important component of the best quality SWO
algorithm. The use of critics that guarantee each step of SWO produces a change in
schedule is a novel contribution that we believe is an important component of our algo-
rithm. Finally, we verify two conclusions from previous work in SWO. First, informed
permutation construction techniques improve SWO performance over random permu-
tation generation. Second, swapping many rejected observations per critic application
pays off well in terms of both the quality of solutions and speed of SWO. These lessons
may serve others working on complex constrained optimization problems with mixes
of discrete and continuous variables.

There is considerably work left to do on the SFPP. Our experiments assumed all
observations were of equal value; it is easy to generalize our SWO to handle variable
priority, but empirical studies are needed to ensure SWO finds high quality flights. Our
benchmark included problems for which it was always possible to schedule all obser-
vations. SWO can be modified for problems where this is impossible. Ongoing work
shows SWO works well even when this is not the case; again, further tests are required
to ensure good performance. In particular, CPU times will likely increase when early
termination is no longer likely. Additionally, for each observation, minimizing aver-
age line-of-sight water vapor is an important objective. Initial results with SWO show
promise, but more work is needed. Finally, the SFPP also requires that we build series
of flights rather than just a single flight. Preliminary flight series testing indicates that
SWO is a promising technique for building flight series, but the basic algorithm requires
some modifications to ensure good performance.

8

Acknowledgments

We would like to thank European Center for Medium Range Weather Forecasting for
the use of the climatology data, Michael A. K. Gross for his ongoing assistance in this
project, and Tien Ba Dinh for prototyping SWO for the SFPP. This work was funded by
the SOFIA Projects Office and by the NASA Intelligent Systems Program.

References

1.

2.

10.
11.
12.

. Cash, J.R., Karp, A.H.: A variable order runge-kutta method for initial value problems with

14.
15.

Bresina, J.: Heuristic-biased stochastic sampling. In: Proceedings of the 13th National
Conference on Atrtificial Intelligence. (1996)

Johnston, M., Miller, G.: Spike: Intelligent scheduling of the hubble space telescope. In
Zweben, M., Fox, M., eds.: Intelligent Scheduling. Morgan Kaufmann Publishers (1994)

. Potter, W., Gasch, J.: A photo album of earth: Scheduling landsat 7 mission daily activities.

In: Proceedings of the International Symposium Space Mission Operations and Ground Data
Systems. (1998)

. Smith, D.: Choosing objectives in over-subscription planning. Proceedings dfithe

International Conference on Automated Planning and Scheduling (2004)

. Frank, J., Kirkl, E.: Sofia’s choice: Scheduling observations for an airborne observatory. In:

Proceedings of the3'" International Conference on Automated Planning and Scheduling.
(2003)

. Frank, J., Gross, M.A.K., #kli, E.: Sofia’s choice: An ai approach to scheduling airborne

astronomy observations. In: Proceedings ofitéi¢ Conference on Innovative Applications
of Artificial Intelligence. (2004)

. Joslin, D., Clements, D.: Squeaky wheel optimization. Journal of Artificial Intelligence

Researcti0(1999) 353 — 373

. Globus, A., Crawford, J., Lohn, J., Pryor, A.: A comparison of techniques for scheduling

earth observing satellites. In: Proceedings of 168" Conference on the Innovative Appli-
cations of Artificial Intelligence. (2004)

. Barbalescu, L., Whitley, D., Howe, A.: Leap before you look: An effective strategy in an

oversubscribed scheduling problem. In: Proceedings ofi#fi& National Conference on
Artificial Intelligence. (2004)

Smith, T., Pyle, J.: An effective algorithm for project scheduling with arbitrary temporal con-
straints. In: Proceedings of tHe'" National Conference on Attificial Intelligence. (2004)
Becklin, E., Horn, J.: High-latitude observations on sofia. Publications of the Astronomical
Society of the Pacifi¢ 13(2001)

Meeus, J.: Astronomical Algorithms. Willmann-Bell, Inc. (1991)

rapidly varying right hand sides. ACM Transactions on Mathematical Softié@990)
201-222

Bricker, P.: Scheduling Algorithms. Springer (1998)

Lindgren, B.: Statistical Theory. Macmillian (1976)

